Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38060281

RESUMEN

The changes in dietary habit around the world have led to an increased use of additives in the food. The safety of food additives has been a main focus of research for many years due to the ongoing debate on their potential effects on health. In this study, the in vitro genotoxic effects of mannitol and lactitol, polyols used as sweetener food additives, were evaluated using chromosomal aberrations (CAs) and micronucleus (MN) assays in human peripheral lymphocytes. Additionally, the effects of these sweeteners on the mitotic index (MI) and nuclear division index (NDI) were investigated. Concentrations of 500, 1000, 2000, 4000, and 8000 µg/mL for mannitol and 250, 500, 1000, 2000, and 4000 µg/mL for lactitol were used. The results indicated that both polyols did not affect CA and MN frequency, and did not cause a significant change in NDI at all treatment concentratoins. However, mannitol (except at concentrations of 500 and 1000 µg/mL) and lactitol (except at 250 µg/mL) significantly decreased the MI compared to the control at almost all concentrations and treatment times. In conclusion, it was observed that mannitol and lactitol did not have a significant genotoxic effect at the concentrations used in human lymphocytes in vitro.


Asunto(s)
Manitol , Edulcorantes , Humanos , Manitol/toxicidad , Edulcorantes/toxicidad , Células Cultivadas , Aditivos Alimentarios , Daño del ADN
2.
Mutagenesis ; 38(3): 151-159, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-36882025

RESUMEN

Several antioxidant food additives are added to oils, soups, sauces, chewing gum, potato chips, and so on. One of them is octyl gallate. The purpose of this study was to evaluate the potential genotoxicity of octyl gallate in human lymphocytes, using in vitro chromosomal abnormalities (CA), sister chromatid exchange (SCE), cytokinesis block micronucleus cytome (CBMN-Cyt), micronucleus-FISH (MN-FISH), and comet tests. Different concentrations (0.031, 0.063, 0.125, 0.25, and 0.50 µg/ml) of octyl gallate were used. A negative (distilled water), a positive (0.20 µg/ml Mitomycin-C), and a solvent control (8.77 µl/ml ethanol) were also applied for each treatment. Octyl gallate did not cause changes in chromosomal abnormalities, micronucleus, nuclear bud (NBUD), and nucleoplasmic bridge (NPB) frequency. Similarly, there was no significant difference in DNA damage (comet assay), percentage of centromere positive and negative cells (MN-FISH test) compared to the solvent control. Moreover, octyl gallate did not affect replication and nuclear division index. On the other hand, it significantly increased the SCE/cell ratio in three highest concentrations compared to solvent control at 24 h treatment. Similarly, at 48 h treatment, the frequency of SCE raised significantly compared to solvent controls at all the concentrations (except 0.031 µg/ml). An important reduction was detected in mitotic index values in the highest concentration at 24 h treatment and almost all concentrations (except 0.031 and 0.063 µg/ml) at 48 h treatment. The results obtained suggest that octyl gallate has no important genotoxicological action on human peripheral lymphocytes at the concentrations applied in this study.


Asunto(s)
Antioxidantes , Aditivos Alimentarios , Humanos , Antioxidantes/farmacología , Aditivos Alimentarios/toxicidad , Daño del ADN , Pruebas de Micronúcleos/métodos , Aberraciones Cromosómicas/inducido químicamente , Intercambio de Cromátides Hermanas , Linfocitos , Técnicas In Vitro
3.
Drug Chem Toxicol ; 46(2): 297-303, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35016574

RESUMEN

Hypertension is the most common cardiovascular disease and is also known as high blood pressure. The large majority of hypertensive patients need long-term administration of antihypertensive agents. Indapamide is an orally administered diuretic antihypertensive drug. The present work aimed to assess the possible genotoxic effects of indapamide using four different assays: chromosomal aberration (CA), sister chromatid exchange (SCE), micronucleus (MN), and comet. Lymphocytes from three different donors were exposed to 18.75, 37.50, 75.00, and 100.00 µg/ml indapamide. Additionally, a negative, a positive (mitomycin C = MMC, 0.20 µg/ml), and a solvent control (5.4 µl/ml methanol) were also applied. As a result, it was seen that indapamide did not cause a significant change in CAs and MN frequencies compared to the control. It caused significant damage only at the highest concentration in the comet assay. Similarly, while it did not affect the number of SCEs in the 24-h treatment, it increased the SCE frequency at the two highest concentrations in the 48-h. Mitotic index (MI) decreased at almost all concentrations. Considering all these results, this study revealed that indapamide did not have a significant genotoxic effect in these conditions. To the best of our knowledge, this is the first investigation about the genotoxic effect of indapamide in human lymphocytes in vitro.


Asunto(s)
Antihipertensivos , Indapamida , Humanos , Antihipertensivos/toxicidad , Indapamida/toxicidad , Pruebas de Micronúcleos , Daño del ADN , Linfocitos , Mitomicina
4.
Mol Biol Rep ; 49(12): 11273-11280, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35804213

RESUMEN

BACKGROUND: Many genotoxicity tests allow us to understand the mechanism of damages on genetic material occurring in living organisms against various physical and chemical agents. One of them is the Comet test. The current study aimed to evaluate genotoxic caused by picloram and dicamba to root meristems of Allium cepa utilizing comet assay. METHODS: Two different protocols were used for rooting and auxin/pesticide application. (i) A. cepa bulbs were rooted in MS medium and then treated with Murashige and Skoog (MS) medium (control) and 0.67, 1.34, 2.01, 2.68, 3.35, 4.02, and 8.04 mg/L of picloram and dicamba using aseptic tissue culture techniques. (ii) A. cepa bulbs were then rooted in bidistilled water and treated with 0 (control), 0.67, 1.34, 2.01, 2.68, 3.35, 4.02, and 8.04 mg/L of picloram and dicamba in distilled water. The A. cepa root tip cells in both treatment groups were examined using comet test to find the possible DNA damaging effects of picloram and dicamba. RESULTS: The results obtained at all the concentrations were statistically compared with their control groups. Almost at all the concentrations of Picloram and dicamba increased comet tail intensity (%) and tail moment in roots treated in MS medium. Two highest concentrations revealed toxic effect. On the other hand, DNA damaging effect of both auxins was only noted on the highest (> 4.02 mg/L) in roots treated in distilled water. CONCLUSIONS: This study approve and confirm genotoxic effects of how growth regulators on plants. These findings give an evidence of DNA damage in A. cepa. Therefore, both picloram and dicamba should only be used in appropriate and recommended concentrations in agriculture to conserve ecosystem and to pose minimum threat to life.


Asunto(s)
Dicamba , Cebollas , Ensayo Cometa , Cebollas/genética , Dicamba/farmacología , Picloram/farmacología , Ecosistema , Aberraciones Cromosómicas/inducido químicamente , Daño del ADN , Agua
5.
Artículo en Inglés | MEDLINE | ID: mdl-34583820

RESUMEN

Pullulan is a biocompatible and water-soluble exo-polysaccharide produced by primary strains of the fungus Aureobasidium pullulans. It is frequently used in the pharmaceutical and food industries. In this study, possible cytotoxic effect of pullulan was assessed using the MTT assay in the human breast cancer (MCF-7) cell line. Micronucleus (MN), micronucleus-FISH (MN-FISH), random amplified polymorphic DNA (RAPD-PCR), and comet assays were used to investigate genotoxic and antigenotoxic effects of pullulan against mitomycin C (MMC) (at MN assay) and hydrogen peroxide (at comet assay) in human lymphocytes. Antigenotoxicity was determined using two different applications: 1 h pretreatment and simultaneous treatment. In the MTT assay, pullulan significantly reduced the cell viability at 15.6-2000 µg/mL compared to the control. No significant alterations in MN rates were found in human lymphocytes treated with different concentrations of pullulan compared to the control. In contrast, co-treatment of pullulan and MMC decreased the frequency of MN in almost all the treatment concentrations and durations compared to the MMC. No significant change was observed in the frequency of the centromere-positive C + or negative C- MNi compared to the positive control. In comet assay, pullulan did not affect comet tail intensity compared to the negative control. On the contrary, pullulan in combination with H2O2 significantly decreased tail intensity at almost all the concentrations compared to the positive control. The changes occurring in RAPD-PCR profiles following pullulan treatments included an increase or decrease in band intensity and gain or loss of bands. These results indicate that exopolysaccharide Pullulan is not genotoxic; moreover, it possesses a protective effect against MMC and H2O2 induced genotoxicity. In breast cancer cells, pullulan induced cytotoxic/anti-proliferative effect.


Asunto(s)
Antimutagênicos/farmacología , Daño del ADN/efectos de los fármacos , Glucanos/farmacología , Linfocitos/efectos de los fármacos , Mutágenos/toxicidad , Adolescente , Adulto , Ensayo Cometa , Femenino , Humanos , Hibridación Fluorescente in Situ , Células MCF-7 , Masculino , Pruebas de Micronúcleos , Mitomicina/antagonistas & inhibidores , Adulto Joven
6.
Toxicol In Vitro ; 65: 104780, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31978514

RESUMEN

Food additives are approved chemicals used for various purposes in foods; to provide nutritional safety, increase flavor, extend shelf life, reduce nutrient losses etc. In this study, the in vitro genotoxic effects of flavor enhancers, Monopotassium glutamate (MPG) and Magnesium diglutamate (MDG) were investigated in human peripheral blood lymphocytes by using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), cytokinesis-block micronucleus cytome (CBMN-Cyt), and comet assays. Four concentrations of MPG (125, 250, 500, and 1000 µg/mL) and MDG (93.75, 187.5, 375, and 750 µg/mL) were used. Both food additives significantly reduced mitotic index and increased the frequency of CAs at high concentrations. MPG and MDG (except 93.75 µg/mL) significantly increased SCEs/Cell in concentration-dependent manner. In the CBMN-Cyt test, both MPG and MDG increased the formation of micronucleus, nuclear buds, and nucleoplasmic bridges compared to control in a concentration-dependent manner. However, these increases were statistically significant at higher concentrations. MPG (at 500 and 1000 µg/mL) and MDG (except 93.75 µg/mL) significantly increased DNA damages observed by comet assay. It is concluded from these results that MPG and MDG have clastogenic, mutagenic, aneugenic, and cytotoxic effects, particularly at high concentrations in human lymphocytes in vitro.


Asunto(s)
Aditivos Alimentarios/toxicidad , Glutamatos/toxicidad , Mutágenos/toxicidad , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Linfocitos/efectos de los fármacos , Pruebas de Mutagenicidad
7.
Pharm Biol ; 55(1): 1228-1233, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28260400

RESUMEN

CONTEXT: Tranexamic acid is commonly used for curing abnormal bleeding in a variety of diseases. In a previous study, 12 different tetrahydro-2H-1,3,5-thiadiazine derivatives were synthesized from the amine group of tranexamic acid. Their antifibrinolytic and antimicrobial activities were compared with tranexamic acid. 3-Methyl-5-(4-carboxycyclohexylmethyl)-tetrahydro-2H-1,3,5-thiadiazine-2-thione (3-MTTT) was the most remarkable one, which may be used as a drug. OBJECTIVES: In vitro genotoxicity of 3-MTTT was investigated using chromosome aberrations (CAs), sister chromatid exchanges (SCEs), micronucleus (MN) and comet assays. MATERIALS AND METHODS: Various concentrations 0.78, 1.56, 3.13, 6.25, 12.50 and 25.00 µg/mL of 3-MTTT were applied to lymphocytes obtained from two donors for periods of 24 and 48 h. A negative (distilled water), a solvent (2:1 PBS:10% NaOH for cultured lymphocyte, and PBS for isolated lymphocytes) and a positive control (MMC for cultured lymphocytes and H2O2 for isolated lymphocytes) were also maintained. RESULTS: While this compound did not increase the frequency of abnormal cells and CA/cell ratio compared to negative control (except 48 h, 25 µg/mL), it significantly increased the frequency of SCEs at the four highest concentrations at both treatment periods (except 6.25 µg/mL, 48 h). It significantly decreased the MI in all the concentrations at 24 h (except 0.78 µg/mL) and in the highest three concentrations at 48 h. This compound did not significantly increase the frequency of MN and DNA damage compared to negative control. This compound did not affect the replication and nuclear division index. DISCUSSION AND CONCLUSION: Our results demonstrated that this compound does not represent a significant risk at the genetic level in in vitro human lymphocytes.


Asunto(s)
Daño del ADN/efectos de los fármacos , Daño del ADN/genética , Linfocitos/efectos de los fármacos , Linfocitos/fisiología , Tiazinas/toxicidad , Tionas/toxicidad , Adulto , Células Cultivadas , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Peróxido de Hidrógeno/toxicidad , Masculino , Pruebas de Mutagenicidad/métodos
8.
Drug Chem Toxicol ; 40(1): 57-66, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27147406

RESUMEN

Trazodone and milnacipran are the active antidepressant drugs that are being used in the treatment of psychiatric disorders. In this study, the in vitro genotoxic effects of trazodone and milnacipran have been determined in human peripheral blood lymphocytes by using chromosomal aberrations (CAs), sister chromatid exchanges (SCEs), micronuclei (MN), and comet assays. 3.13; 6.25; 12.50; 25.00; 50.00; and 75.00 µg/mL concentrations of trazodone and 2.50; 5.00; 10.00; 20.00; 30.00; and 40.00 µg/mL concentrations of milnacipran were used. Trazodone and milnacipran significantly increased the frequency of CAs and SCEs compared with the control. Both of the active ingredients raised the MN frequency in a dose-dependent manner. Mitotic index was significantly decreased, but replication and nuclear division indices were not affected at all treatments. Trazodone was statistically increased the mean comet tail intensity, tail length, and tail moment at three concentrations (6.25; 12.50; and 25.00 µg/mL) compared with control. Two highest concentrations (50 and 75 µg/mL) of trazodone were toxic in the comet assay. Milnacipran increased the comet tail intensity, tail length, and tail moment at all concentrations. It is concluded that trazodone and milnacipran have clastogenic, mutagenic, and cytotoxic effects on human lymphocytes in vitro.


Asunto(s)
Antidepresivos/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Ciclopropanos/toxicidad , Daño del ADN , Intercambio de Cromátides Hermanas/efectos de los fármacos , Trazodona/toxicidad , Adulto , Células Cultivadas , Ensayo Cometa , Relación Dosis-Respuesta a Droga , Femenino , Voluntarios Sanos , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/patología , Masculino , Micronúcleos con Defecto Cromosómico/inducido químicamente , Milnaciprán , Pruebas de Mutagenicidad/métodos , Intercambio de Cromátides Hermanas/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...